Koshe Dekhi 12 Class 9
Koshe Dekhi 12 Class 9
Q1. ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB āĻāĻŦāĻ DC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P āĻāĻŦāĻ Q; āĻĒā§āϰāĻŽāĻžāύ āĻāϰāĻŋ āϝā§, APCQ āĻāϤā§āϰā§āĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞāĨ¤
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ D āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ AB āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ DM āϞāĻŽā§āĻŦ āĻ āĻā§āĻāύ āĻāϰāĻž āĻšāϞ āϝāĻž AB āĻŦāĻžāĻšā§āĻā§ M āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, APCQ āĻāϤā§āϰā§āĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞāĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = AB à DM …..(1)
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB āĻāĻŦāĻ DC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P āĻāĻŦāĻ Q
â´ AP = ÂŊ AB āĻāĻŦāĻ QC = ÂŊ DC
āĻāĻŦāĻžāϰ, ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āĻ°Â AB = DC
āϏā§āϤāϰāĻžāĻ, AP = QC …..(2)
APCQ āĻāϤā§āϰā§āĻā§āĻā§āϰ AP || QC [âĩ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB || DC]
āĻāĻŦāĻ AP = QC  [(2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
â´ APCQ āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤
APCQ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= AP Ã DM
= ÂŊ AB Ã DM [âĩ AP = ÂŊ AB]
= ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ [(1) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
â´ APCQ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q2. ABCD āϰāĻŽā§āĻŦāϏā§āϰ AB āĻāĻŦāĻ DC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝ⧠āĻĻā§āϰāϤā§āĻŦ PQ āĻāĻŦāĻ AD āĻ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝ⧠āĻĻā§āϰāϤā§āĻŦ RS; āĻĒā§āϰāĻŽāĻžāύ āĻāϰāĻŋ āϝā§, PQ = RS
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āϰāĻŽā§āĻŦāϏā§āϰ AB āĻāĻŦāĻ DC āĻŦāĻžāĻšā§āĻ°Â āĻŽāϧā§āϝ⧠āĻĻā§āϰāϤā§āĻŦ PQ āĻāĻŦāĻ AD āĻ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝ⧠āĻĻā§āϰāϤā§āĻŦ RS.
āĻĒā§āϰāĻŽāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PQ = RS
āĻ āĻā§āĻāύāĻ C, R; B, R; A, P āĻ B, P āĻŦāĻŋāύā§āĻĻā§āĻā§āϞāĻŋ āϝā§āĻ āĻāϰāϞāĻžāĻŽāĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖāĻ ÎABP āĻāĻŦāĻ āϰāĻŽā§āĻŦāϏ ABCD āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϝā§āĻāϞ AB āĻ DC āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ⧎
â´Â ABCD āϰāĻŽā§āĻŦāϏā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ÎABP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ ….(1)
ÎBRC āĻāĻŦāĻ āϰāĻŽā§āĻŦāϏ ABCD āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϝā§āĻāϞ BC āĻ AD āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ⧎
â´Â ABCD āϰāĻŽā§āĻŦāϏā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ÎBRC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāĻ˛Â ….(2)
(1) āύāĻ āĻ (2) āύāĻ āϏāĻŽā§āĻāϰāĻŖ āϤā§āϞāύāĻž āĻāϰ⧠āĻĒāĻžāĻ –
ÎABP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÎBRC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, ÂŊ à AB à PQ= ÂŊ à BC à RS
āĻāĻŦāĻžāϰ, āϝā§āĻšā§āϤ⧠āϰāĻŽā§āĻŦāϏā§āϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āϏāĻŽāĻžāύÂ
â´ AB = BC
āϏā§āϤāϰāĻžāĻ, ÂŊ à AB à PQ= ÂŊ à AB à RS
â´ PQ = RS [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q3. ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB āĻāĻŦāĻ DC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P āĻāĻŦāĻ Q; āĻĒā§āϰāĻŽāĻžāύ āĻāϰāĻŋ āϝā§, PBQD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻŦāĻ ÎPBC = ÂŊ à āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ PBQD.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB āĻāĻŦāĻ DC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P āĻāĻŦāĻ Q;
āĻĒā§āϰāĻŽāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PBQD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻŦāĻ ÎPBC = ÂŊ à āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ PBQD.
āĻĒā§āϰāĻŽāĻžāύāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB = DC āĻāĻŦāĻ AB || DC
P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PB = ÂŊ AB
Q, DC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ DQ = ÂŊ DC
āϏā§āϤāϰāĻžāĻ, PB = DQ [āϝā§āĻšā§āϤā§, AB = DC]
āϝā§āĻšā§āϤā§, AB || DC
â´ PB || DQ
PBQD āĻāϤā§āϰā§āĻā§āĻā§āϰ PB = DQ āĻāĻŦāĻ PB || DQ
â´ PBQD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
ÎPBC āĻāĻŦāĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ PBQD āĻāĻāĻ āĻā§āĻŽāĻŋ PB āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ āϝā§āĻāϞ PB āĻ CD āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ [āϝā§āĻšā§āϤā§, AB || DC, â´ PB || DC]Â
â´ ÎPBC = ÂŊ à āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ PBQD [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q4. ABC āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ AB = AC āĻāĻŦāĻ āĻŦāϰā§āϧāĻŋāϤ BC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ P āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ā§ˇ P āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ AB āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āϝāĻĨāĻžāĻā§āϰāĻŽā§ PQ āĻ PR āϞāĻŽā§āĻŦ⧎ B āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ AC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦ BS; āĻĒā§āϰāĻŽāĻžāύ āĻāϰāĻŋ āϝā§, PQ â PR = BS.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ AB = AC. āĻŦāϰā§āϧāĻŋāϤ BC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ P āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āĨ¤ PQâĨAB, PRâĨAC āĻāĻŦāĻ BSâĨAC
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PQ â PR = BS
āĻ āĻā§āĻāύāĻ A, P āϝā§āĻā§āϤ āĻāϰāϞāĻžāĻŽā§ˇ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž
= ÂŊ Ã AC Ã BS
ÎACP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž
= ÂŊ Ã AC Ã PR
ÎABP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž
= ÂŊ Ã AB Ã PQ
ÎABP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ + ÎACP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, ÂŊ à AB à PQ = ÂŊ à AC à BS + ÂŊ à AC à PR
āĻŦāĻž, AB à PQ = AC à BS + AC à PR
āĻŦāĻž, AB à PQ = AC à (BS + PR)Â
āĻŦāĻž, AB à PQ = AB à (BS + PR) [âĩ AB = AC]
āĻŦāĻž, PQ = BS + PR
â´ PQ â PR = BS [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q5. ABC āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŦāĻžāĻāϰ⧠āĻāĻŦāĻ ABC āĻā§āĻŖāĻŋāĻ āĻ āĻā§āĻāϞā§āϰ āĻŽāϧā§āϝ⧠O āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ā§ˇ O āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ AB, BC āĻāĻŦāĻ CA āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦ āϝāĻĨāĻžāĻā§āϰāĻŽā§ OP, OQ āĻāĻŦāĻ OR; āĻĒā§ā§°āĻŽāĻžāύ āĻāϰāĻŋ āϝā§, āϤā§āϰāĻŋāĻā§āĻāĻāĻŋāϰ āĻāĻā§āĻāϤāĻž = OP + OQ â OR
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āĻāĻāĻāĻŋ āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻāĨ¤ ABC āĻā§āĻŖāĻŋāĻ āĻ āĻā§āĻāϞā§āϰ āĻŽāϧā§āϝ⧠O āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āĨ¤ OPâĨAB, OQâĨBC āĻāĻŦāĻ ORâĨCA
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, āϤā§āϰāĻŋāĻā§āĻāĻāĻŋāϰ āĻāĻā§āĻāϤāĻž = OP + OQ â OR
āĻ āĻā§āĻāύāĻ ASâĨBC āĻ āĻā§āĻāύ āĻāϰāĻž āĻšāϞ āĻāĻŦāĻ O,A; O,B āĻāĻŦāĻ O, C āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞāĨ¤
āĻĒā§āϰāĻŽāĻžāύāĻ ABC āĻāĻāĻāĻŋ āϏāĻŽāĻŦāĻžāĻšā§ āϤā§āϰāĻŋāĻā§āĻ
āϏā§āϤāϰāĻžāĻ, AB = BC = CA
ÎOAB āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāĻ˛Â = ÂŊ à AB à OP
ÎOBC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à BC à OQ
ÎOAC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à CA à OR
ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à BC à AS
ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÎOAB āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ + ÎOBC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ â ÎOAC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, ÂŊ à BC à AS = ÂŊ à AB à OP + ÂŊ à BC à OQ â ÂŊ à CA à OR
āĻŦāĻž, BC à AS = AB à OP + BC à OQ â CA à OR
āĻŦāĻž, BC à AS = BC à OP + BC à OQ â BC à OR [âĩ AB = BC = CA]
āĻŦāĻž, BC à AS = BC à (OP + OQ â OR)
āĻŦāĻž, AS = OP + OQ â OR
â´ āϤā§āϰāĻŋāĻā§āĻāĻāĻŋāϰ āĻāĻā§āĻāϤāĻž = OP + OQ â OR [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q6. ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž AD, AC āĻāĻŦāĻ BC āĻā§ āĻŦāĻž āϤāĻžāĻĻā§āϰ āĻŦāϰā§āϧāĻŋāϤ āĻ āĻāĻļāĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ E, F āĻ G āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāύ āĻāϰāĻŋ āϝā§, ÎAEG = ÎAFD
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž AD, AC āĻāĻŦāĻ BC āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ E, F āĻ G āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, ÎAEG = ÎAFD
āĻĒā§āϰāĻŽāĻžāύāĻ ABCD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
āϏā§āϤāϰāĻžāĻ, AB || DC āĻāĻŦāĻ AD || BC
ABGE āĻāϤā§āϰā§āĻā§āĻā§āϰ AB || EG āĻāĻŦāĻ AE || BG [âĩ AD || BC]
āϏā§āϤāϰāĻžāĻ, ABGE āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤
EGCD āĻāϤā§āϰā§āĻā§āĻā§āϰ DC || EG [âĩ AB || DC āĻāĻŦāĻ AB || EG]
āĻāĻŦāĻ ED || GC [âĩ AD || BC]
āϏā§āϤāϰāĻžāĻ, EGCD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤
EGCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻ ÎCDF āĻāĻāĻ āĻā§āĻŽāĻŋ āĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞ DC āĻ EG āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ
â´ EGCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2ÎCDF -āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāĻ˛Â …..(1)
āϝā§āĻšā§āϤ⧠āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻāϰā§āĻŖ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻā§ āĻĻā§āĻāĻŋ āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§āĨ¤
â´ ABGE āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ ÎABG = ÎAEG
āĻāĻŦāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ ÎABC = ÎADC
ABGE āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÎABG + ÎAEG
= ÎAEG + ÎAEG
= 2ÎAEG
â´ ABGE āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2ÎAEG …..(2)
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = EGCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāĻ˛Â + ABGE āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
ÎABC + ÎADC = 2ÎCDF + 2ÎAEG [(1) āĻ (2) -āĻāϰ āϏāĻžāĻšāĻžāϝā§āϝā§]
āĻŦāĻž, 2ÎADC = 2(ÎCDF + ÎAEG)
āĻŦāĻž, ÎADC = ÎCDF + ÎAEG
āĻŦāĻž, ÎAFD + ÎCDF = ÎCDF + ÎAEG
â´ ÎAEG = ÎAFD [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q7. ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ DC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ E āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āĨ¤ āĻŦāϰā§āϧāĻŋāϤ AE, āĻŦāϰā§āϧāĻŋāϤ BC āĻā§ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ D, F āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞā§āĨ¤ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, (i) ÎADF = ÎABE (ii) ÎDEF = ÎBEC
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύ: ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ DC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ E āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āĨ¤ āĻŦāϰā§āϧāĻŋāϤ AE, āĻŦāϰā§āϧāĻŋāϤ BC āĻā§Â F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ D, F āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞā§āĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, (i) ÎADF = ÎABE (ii) ÎDEF = ÎBEC
āĻĒā§āϰāĻŽāĻžāύāĻ ÎADF āĻāĻŦāĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ ABCD āĻāĻāĻ āĻā§āĻŽāĻŋ AD āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϝā§āĻāϞ AD āĻ BF āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
āϏā§āϤāϰāĻžāĻ, ÎADF = ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāĻ˛Â ….(1)
ÎABE āĻāĻŦāĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ ABCD āĻāĻāĻ āĻā§āĻŽāĻŋ AD āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϝā§āĻāϞ AD āĻ BF āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĨ¤
āϏā§āϤāϰāĻžāĻ, ÎABE = ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāĻ˛Â ….(2)
(1) āύāĻ āĻ ( 2 ) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ,
ÎADF = ÎABE [(i) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÎADE + ÎABE + ÎBEC
(2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ,
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2ÎABE
āϏā§āϤāϰāĻžāĻ, 2ÎABE = ÎADE + ÎABE + ÎBEC
āĻŦāĻž, 2ÎABE â ÎABE = ÎADE + ÎBEC
āĻŦāĻž, ÎABE = ÎADE + ÎBEC
āĻŦāĻž, ÎADF = ÎADE + ÎBEC [(1) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
āĻŦāĻž, ÎADE + ÎDEF = ÎADE + ÎBEC
â´ ÎDEF = ÎBEC [(ii) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q8. āϏāĻŽāĻžāύ āĻā§āώā§āϤā§āϰāĻĢāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ ABC āĻāĻŦāĻ ABD āĻĻā§āĻāĻŋ āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰ⧠AB āĻŦāĻžāĻšā§āϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĻāĻŋāĻā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, AB, CD – āĻā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰā§āĨ¤
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ÎABC āĻāĻŦāĻ ÎABD āĻāĻāĻ āĻā§āĻŽāĻŋ AB āĻāϰ āĻāĻĒāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĻāĻŋāĻā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤ ÎABC āĻāĻŦāĻ ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύāĨ¤ CD āϏāϰāϞāϰā§āĻāĻž AB āĻā§ O āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, AB, CD āĻā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰā§āĨ¤
āĻ āĻā§āĻāύāĻ CPâĨAB  āĻ DQâĨAB āĻ āĻā§āĻāύ āĻāϰāϞāĻžāĻŽāĨ¤
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à AB à CP
ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à AB à DQ
āϝā§āĻšā§āϤā§, ÎABC āĻāĻŦāĻ ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύ
āϏā§āϤāϰāĻžāĻ, ÂŊ à AB à CP = ÂŊ à AB à DQ
â´ CP = DQ
ÎCPO āĻ ÎDQO āĻāϰ –
â OPC = â OQD [âĩ CPâĨAB āĻ DQâĨAB]
â COP = â DOQ [āĻĒāϰāϏā§āĻĒāϰ āĻŦāĻŋāĻĒā§āϰāϤā§āĻĒ āĻā§āĻŖ]
CP = DQ
â´ ÎCPO â ÎDQO [āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ ÎAS āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
â´ CO = OD [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻŦāĻžāĻšā§]
â´ O, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ AB, CD āĻā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰ⧠[āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q9. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D; CDEF āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻāĻŋ BC āĻŦāĻžāĻšā§ āĻāĻŦāĻ A āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ BC āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ⧎ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, ÎABC = āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ CDEF.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D; CDEF āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻāĻŋ BC āĻŦāĻžāĻšā§ āĻāĻŦāĻ A āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ BC āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
āĻ āĻā§āĻāύāĻ A, D āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞāĨ¤
āĻĒā§āϰāĻŽāĻžāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ D, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´AD, ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ ÎADC = ÂŊ Ã ÎABC …..(1)
ÎADC āĻāĻŦāĻ DCFE āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻ āĻā§āĻŽāĻŋ DC āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞ DC āĻ AF āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎADC = ÂŊ à DCFE āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
ÎABC= āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ CDEF [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q10. ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ BD āĻāϰā§āĻŖā§āϰ āĻāĻĒāϰ P āϝā§āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āĨ¤ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, ÎAPD = ÎCPD
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ BD āĻāϰā§āĻŖā§āϰ āĻāĻĒāϰ P āϝā§āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, ÎAPD = ÎCPD
āĻ āĻā§āĻāύāĻ AEâĨBD āĻ CFâĨBD āĻ āĻā§āĻāύ āĻāϰāĻž āĻšāϞ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à BD à AE
ÎCBD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à BD à CF
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻā§ āĻĻā§āĻāĻŋ āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§āĨ¤
â´ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÎCBD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, ÂŊ à BD à AE = ÂŊ à BD à CF
â´ AE = CF
ÎAPD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à PD à AE
ÎCPD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à PD à CF
= ÂŊ Ã PD Ã AEÂ Â [âĩÂ AE = CF]
= ÎAPD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
â´ ÎAPD = ÎCPD [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q11. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻāĻŦāĻ BE āĻŽāϧā§āϝāĻŽāĻžā§ˇ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, ÎACD = ÎBCE.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻāĻŦāĻ BE āĻŽāϧā§āϝāĻŽāĻžā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, ÎACD = ÎBCE
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABC āĻāϰ AD āĻŽāϧā§āϝāĻŽāĻž,
ÎABD =ÎACD [âĩ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŽāϧā§āϝāĻŽāĻž āϤā§āϰāĻŋāĻā§āĻāĻāĻŋāĻā§ āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻŦāĻŋāĻļāĻŋāώā§āĻ āϤā§āϰāĻŋāĻā§āĻā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§āĨ¤]
â´Â ÎACD = ÂŊ Ã ÎABCÂ …. (1)
āĻāĻŦāĻžāϰ, ÎABC āĻāϰ BE āĻŽāϧā§āϝāĻŽāĻž,
â´Â ÎABE = ÎBCE
â´ ÎBCE = ÂŊ Ã ÎABCÂ …..(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ,
ÎACD = ÎBCE [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q12. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž AB āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P āĻāĻŦāĻ Q āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ CP āĻāĻŦāĻ BQ āĻĒāϰāϏā§āĻĒāϰāĻā§ X āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§,
(i) ÎBPQ = ÎCPQ
(ii) ÎBCP = ÎBCQ
(iii) ÎACP = ÎABQ
(iv) ÎBXP = ÎCXQ
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ P, AB āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āĻāĻŦāĻ Q, AC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ BC || PQ; CP āĻāĻŦāĻ BQ āĻĒāϰāϏā§āĻĒāϰāĻā§ X āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§,
(i) ÎBPQ = ÎCPQ
(ii) ÎBCP = ÎBCQ
(iii) ÎACP = ÎABQ
(iv) ÎBXP = ÎCXQ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎBPQ āĻ ÎCPQ āĻāĻāĻ āĻā§āĻŽāĻŋ PQ āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϝā§āĻāϞ PQ āĻāĻŦāĻ BC āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎBPQ = ÎCPQ [(i) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
ÎBCP āĻ ÎBCQ āĻāĻāĻ āĻā§āĻŽāĻŋ BC āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϝā§āĻāϞ BC āĻāĻŦāĻ PQ āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎBCP = ÎBCQ [(ii) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
ÎABC = ÎACP + ÎBCP
āĻāĻŦāĻžāϰ, ÎABC = ÎABQ + ÎBCQ
â´Â ÎACP + ÎBCP = ÎABQ + ÎBCQ
āĻŦāĻž, ÎACP + ÎBCP = ÎABQ + ÎBCP [âĩ ÎBCP = ÎBCQ]
â´ ÎACP = ÎABQ [(iii) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
āϝā§āĻšā§āϤā§, ÎBCP = ÎBCQ
āĻŦāĻž, ÎBXP + ÎBCX = ÎCXQ + ÎBCX
â´ ÎBXP = ÎCXQ [(iv) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q13. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D āĻāĻŦāĻ BC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ P āϝā§āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ā§ˇ P, A āϝā§āĻā§āϤ āĻāϰāĻŋ⧎ D āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ PA āϏāϰāϞāϰā§āĻāĻžāĻāĻļā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž AB āĻŦāĻžāĻšā§āĻā§ Q āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§,Â
(i) ÎADQ = ÎPDQ
(ii) ÎBPQ = ÂŊ Ã ÎABC
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ
ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D āĻāĻŦāĻ BC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ P āϝā§āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ P, A āϝā§āĻā§āϤ āĻāϰāĻŋ⧎ D āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ PA āϏāϰāϞāϰā§āĻāĻžāĻāĻļā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž AB āĻŦāĻžāĻšā§āĻā§ Q āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ AD āĻ PQ āĻĒāϰāϏā§āĻĒāϰāĻā§ O āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§,
(i) ÎADQ = ÎPDQ
(ii) ABPQ =ÂŊ Ã ÎABC
āĻĒā§āϰāĻŽāĻžāύāĻ ÎADQ āĻ ÎPDQ āĻāĻāĻ āĻā§āĻŽāĻŋ DQ āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϝā§āĻāϞ DQ āĻāĻŦāĻ PA āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎADQ = ÎPDQ [(i) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
āĻŦāĻž, ÎAOQ + ÎDOQ = ÎPOD + ÎDOQ
â´Â ÎAOQ = ÎPOD
ÎBAD = ÎBQD + ÎAOQ + ÎDOQ
= ÎBQD + ÎPOD + ÎDOQ
= ÎBPQ
â´ ÎBAD = ÎBPQ …..(1)
ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻž
â´ ÎBAD = ÂŊ Ã ÎABCÂ ….(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
ÎBPQ = ÂŊ à ÎABC  [(ii) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q14. ABC āϤā§āϰāĻŋāĻā§āĻā§ AB = AC; B āĻ C āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ AB āĻ AC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦ āϝāĻĨāĻžāĻā§āϰāĻŽā§ AC āĻ AB āĻŦāĻžāĻšā§āĻā§ E āĻ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāύ āĻāϰāĻŋ āϝā§, FE || BC.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§ AB = AC; CFâĨAB āĻāĻŦāĻ BEâĨAC
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, FE || BC
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à AB à CF
āĻāĻŦāĻžāϰ ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à AC à BE
â´ ÂŊ Ã AB Ã CF = ÂŊ Ã AC Ã BE
â´ CF = BE [âĩÂ AB = AC]
ÎBCF āĻ ÎBCE āĻāϰ –
BC āϏāĻžāϧāĻžāϰāĻŖ āĻŦāĻžāĻšā§
â BFC = â CEB [āĻĒā§āϰāϤā§āϝā§āĻā§āĻ āϏāĻŽāĻā§āĻŖ]
CF = BE
â´ ÎBCF â ÎBCE [āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ S-A-S āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
BE = CF [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻŦāĻžāĻšā§]
â´ ÎBCF = ÎBCE
ÎBCF āĻ ÎBCE āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύ āĻāĻŦāĻ āϤāĻžāϰāĻž āĻāĻāĻ āĻā§āĻŽāĻŋ BC āĻāϰ āĻāĻĒāϰ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎBCF āĻ ÎBCE āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞ BC āĻ FE āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻšāĻŦā§āĨ¤
āϏā§āϤāϰāĻžāĻ, FE || BC [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q15. ABC āϤā§āϰāĻŋāĻā§āĻā§ â ABC = â ACB; â ABC āĻ â ACB āĻā§āĻŖā§āϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻāĻĻā§āĻŦāϝāĻŧ AC āĻ AB āĻŦāĻžāĻšā§āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ E āĻ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, FE||BC.
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§ â ABC =â ACB; â ABC āĻ â ACB āĻā§āĻŖā§āϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻāĻĻā§āĻŦāϝāĻŧ AC āĻ AB āĻŦāĻžāĻšā§āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ E āĻ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, FE || BC
āĻĒā§āϰāĻŽāĻžāύāĻ BE, â ABC āĻāϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻ
â´ â CBE = ÂŊ Ãâ ABCÂ …..(1)
CF, â ACB āĻāϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻ
â BCF = ÂŊ Ã â ACB ….. (2)
āĻāĻŦāĻžāϰ â ABC = â ACB
â´ â CBE =â BCF …..(3) [(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
ÎBCF āĻāĻŦāĻ ÎBCE āĻāϰ –
â CBE =â BCF [(3) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
â FBC =â ECB [âĩÂ â ABC = â ACB]
BC āϏāĻžāϧāĻžāϰāĻŖ āĻŦāĻžāĻšā§
ÎBCF â ÎBCE [āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ A-A-S āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
â´ ÎBCF = ÎBCE
ÎBCF āĻ ÎBCE āĻāĻāĻ āĻā§āĻŽāĻŋ BC āĻāϰ āĻāĻĒāϰ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻāĻŦāĻ āĻāĻĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύāĨ¤
āϏā§āϤāϰāĻžāĻ, ÎBCF āĻ ÎBCE āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϝā§āĻāϞ BC āĻ FE āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
FE || BC [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q16. āϏāĻŽāĻžāύ āĻā§āώā§āϤā§āϰāĻĢāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ ABCD āĻ AEFG āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰ āĻĻā§āĻāĻŋāϰ â A āϏāĻžāϧāĻžāϰāĻŖ āĻāĻŦāĻ E, AB āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, DE || FC.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻ AEFG āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύāĨ¤ â A āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻĻā§āĻāĻŋāϰ āϏāĻžāϧāĻžāϰāĻŖ āĻā§āĻŖāĨ¤ E, AB āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, DE||FC
āĻ āĻā§āĻāύāĻ D,F; E, C āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞāĨ¤
āĻĒā§āϰāĻŽāĻžāύāĻ ÎDEF āĻāĻŦāĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ AEFG āĻāĻāĻ āĻā§āĻŽāĻŋ EF āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞ EF āĻ AG āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
āϏā§āϤāϰāĻžāĻ, AEFG āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2ÎDEF
ÎCDE āĻāĻŦāĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ ABCD āĻāĻāĻ āĻā§āĻŽāĻŋ CD āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞ CD āĻ BA āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
āϏā§āϤāϰāĻžāĻ, ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2ÎCDE
āĻāĻŦāĻžāϰ, ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = AEFG āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
â´ 2ÎCDE = 2ÎDEF
â´ ÎCDE = ÎDEF
ÎCDE āĻ ÎDEF āĻāĻāĻ āĻā§āĻŽāĻŋ DE āĻāϰ āĻāĻĒāϰ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻāĻŦāĻ āĻāĻĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύ
â´ ÎCDE āĻ ÎDEF āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞ DE āĻ FC āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻšāĻŦā§āĨ¤Â
â´ DE || FC [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q17. ABCD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻŦāĻ ABCE āĻāĻāĻāĻŋ āĻāϤā§āϰā§āĻā§āĻ⧎ AC āĻā§°ā§āĻŖ ABCE āĻāϤā§āϰā§āĻā§āĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰāĻāĻŋāĻā§ āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āĻ āĻāĻļā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, AC || DE
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻŦāĻ ABCE āĻāĻāĻāĻŋ āĻāϤā§āϰā§āĻā§āĻ⧎ AC āĻāϰā§āĻŖ ABCE āĻāϤā§āϰā§āĻā§āĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰāĻāĻŋāĻā§ āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āĻ āĻāĻļā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, AC || DE
āĻĒā§āϰāĻŽāĻžāύāĻ ABCE āĻāϤā§āϰā§āĻā§āĻā§āϰ AC āĻāϰā§āĻŖ āĻāϤā§āϰā§āĻā§āĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰāĻāĻŋāĻā§ āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āĻ āĻāĻļā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§āĨ¤
â´ ÎABC = ÎACEÂ ….(1)
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AC āĻāϰā§āĻŖ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻā§ āĻĻā§āĻāĻŋ āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§āĨ¤
â´ ÎABC = ÎACDÂ ….(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ,
ÎACE = ÎACD
ÎACE āĻ ÎACD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύ āĻāĻŦāĻ āϤāĻžāϰāĻž āĻāĻāĻ āĻā§āĻŽāĻŋ AC āĻāϰ āĻāĻĒāϰ āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎACE āĻ ÎACD āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞ AC āĻ ED āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´Â AC || DE [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q18. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D; P āĻāĻŦāĻ Q āϝāĻĨāĻžāĻā§āϰāĻŽā§ BC āĻ BA āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āĻāĻŽāύāĻāĻžāĻŦā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āϝā§, ÎBPQ = ÂŊ à ÎABC; āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, DQ || PA
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D; P āĻāĻŦāĻ Q āϝāĻĨāĻžāĻā§āϰāĻŽā§ BC āĻ BA āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āĻāĻŽāύāĻāĻžāĻŦā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āϝā§, ÎBPQ = ÂŊ à ÎABC; AD āĻ PQ āĻĒāϰāϏā§āĻĒāϰāĻā§ O āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, DQ || PA
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABC āĻāϰ AD āĻŽāϧā§āϝāĻŽāĻž
ÎABD = ÎADC [âĩ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŽāϧā§āϝāĻŽāĻž āϤā§āϰāĻŋāĻā§āĻāĻāĻŋāĻā§ āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āĻā§āώā§āϤā§āϰāĻĢāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϤā§āϰāĻŋāĻā§āĻā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§āĨ¤]
â´ ÎABD = ÂŊ Ã ÎABC …..(1)
āĻāĻŦāĻžāϰ ÎBPQ = ÂŊ à ÎABC ….(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ-
ÎABD = ÎBPQ
āĻŦāĻž, ÎBDQ + ÎDQA = ÎBDQ + ÎDQP
â´ ÎDQA = ÎDQP
ÎDQA āĻ ÎDQP āĻāĻāĻ āĻā§āĻŽāĻŋ DQ āĻāϰ āĻāĻĒāϰ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻāĻŦāĻ āĻāĻĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϏāĻŽāĻžāύāĨ¤
â´Â ÎDQA āĻ ÎDQP āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ āϝā§āĻāϞ DQ āĻ PA āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ DQ || PA [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q19. ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB, BC, CD āĻāĻŦāĻ DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ E, F, G āĻ H; āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§,
(i) EFGH āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
(ii) EFGH āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞā§āϰ āĻ āϰā§āϧā§āĻ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB, BC, CD āĻāĻŦāĻ DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ E, F, G āĻ H.
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§,
(i) EFGH āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
(ii) EFGH āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞā§āϰ āĻ āϰā§āϧā§āĻ⧎
āĻ āĻā§āĻāύāĻ B,D āĻ F,H āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞāĨ¤
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABD āĻāϰ E, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ H, AD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
â´ EH = ÂŊ à BD āĻāĻŦāĻ EH || BD …..(1)
ÎCBD āĻāϰ F, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ G, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ā§ˇ
â´ FG = ÂŊ à BD āĻāĻŦāĻ FG || BD …..(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
EH = FG āĻāĻŦāĻ EH || FG
EFGH āĻāϤā§āϰā§āĻā§āĻā§āϰ EH = FG āĻāĻŦāĻ EH || FG
EFGH āĻāϤā§āϰā§āĻā§āĻāĻāĻŋ āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤ [(i) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ BC = AD āĻāĻŦāĻ BC || AD
BC āĻ DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ F āĻ H
â´Â BF = CF = ÂŊ Ã BC;
AH = HD = ÂŊ Ã AD
āϝā§āĻšā§āϤā§, BC = AD āĻāĻŦāĻ BC || AD
â´ BF = AH = CF = DH āĻāĻŦāĻ BF || AH, CF || DH
ABFH āĻāϤā§āϰā§āĻā§āĻā§āϰ BF = AH āĻāĻŦāĻ BF || AH
â´ ABFH āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
CFHD āĻāϤā§āϰā§āĻā§āĻā§āϰ CF = DH āĻāĻŦāĻ CF || DH
â´ CFHD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
ÎEFH āĻāĻŦāĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ ABFH āĻāĻāĻ āĻā§āĻŽāĻŋ HF āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ āϝā§āĻāϞ HF āĻāĻŦāĻ AB āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎEFH = ÂŊ à ABFH āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
ÎGFH āĻāĻŦāĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ CFHD āĻāĻāĻ āĻā§āĻŽāĻŋ FH āĻāĻŦāĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ āϝā§āĻāϞ FH āĻāĻŦāĻ CD āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎGFH = ÂŊ à CFHD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻāĻāύ, ÎEFH + ÎGFH
= ÂŊ à ABFH āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ + ÂŊ à CFHD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à (ABFH āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ + CFHD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ)
â´ EFGH āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ [(ii) āύāĻ āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q20. ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ AB || DC āĻāĻŦāĻ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E; āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, AED āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ AB || DC āĻāĻŦāĻ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ EāĨ¤
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, ÎAED = ÂŊ à ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎABC āĻāϰ AE āĻŽāϧā§āϝāĻŽāĻž,
â´ 2ÎABE = ÎABC ….(1)
[âĩ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻŽāϧā§āϝāĻŽāĻž āϤā§āϰāĻŋāĻā§āĻāĻāĻŋāĻā§ āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āĻā§āώā§āϤā§āϰāĻĢāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϤā§āϰāĻŋāĻā§āĻā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§]
ÎBDC āĻāϰ DE āĻŽāϧā§āϝāĻŽāĻž,
â´ 2ÎDEC = ÎBDC …..(2)
ÎBDC āĻ ÎADC āĻāĻāĻ āĻā§āĻŽāĻŋ DC āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ āϝā§āĻāϞ DC āĻ AB āĻāϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤāĨ¤
â´ ÎBDC = ÎADC
āĻŦāĻž, 2ÎDEC = ÎADC …..(3)
(1) + (3) āĻāϰ⧠āĻĒāĻžāĻ-
2ÎABE + 2ADEC = ÎABC + ÎADC
āĻŦāĻž, 2 (ÎABE + ADEC ) = ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, 2 (ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ â ÎADE āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ) = ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, 2ÃABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ â 2ÃÎADE āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, 2ÃABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ â ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2ÃÎADE āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻŦāĻž, ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2ÃÎADE āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
â´ ÎADE āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q21. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(i) ÎABC āĻāϰ BC, CA āĻāĻŦāĻ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ D, E āĻ F; āϝāĻĻāĻŋ ÎABC = 16 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ. āĻšāϝāĻŧ āϤāĻžāĻšāϞ⧠FBCE āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ-
(a) 40 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(b) 8 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(c) 12 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ
(d) 100 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (c) 12 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.

ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BE āĻŽāϧā§āϝāĻŽāĻž
â´ ÎABE = ÎBEC = ÂŊ Ã ÎABC
= ÂŊ à 16 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
= 8 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
ABE āϤā§āϰāĻŋāĻā§āĻā§āϰ EF āĻŽāϧā§āϝāĻŽāĻž
â´ ÎBFE = ÂŊ Ã ÎABE
= ÂŊ à 8 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
= 4 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
â´ FBCE āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÎBFE + ÎBEC
= (8 + 4) āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
= 12 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (c) 12 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
Q21. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(ii) A, B, C, D āϝāĻĨāĻžāĻā§āϰāĻŽā§ PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ PQ, QR, RS, SP āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤ PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ 36 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ. āĻšāϞā§, ABCD āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ –
(a) 24 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(b) 18 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(c) 30 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(d) 36 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (b) 18 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.

āϝā§āĻšā§āϤā§, A, B, C, D āϝāĻĨāĻžāĻā§āϰāĻŽā§ PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ PQ, QR, RS, SP āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
â´ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = ÂŊ à PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āĻ°Â āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à36 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
= 18 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (b) 18 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
Q21. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(iii) ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻāĻŋāϤāϰ O āϝ⧠āĻā§āύ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ā§ˇ ÎAOB + ÎCOD = 16 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ. āĻšāϞā§, ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ –
(a) 8 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(b) 4 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(c) 32 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
(d) 64 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (c) 32 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.

ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB = DC
ÎAOB + ÎCOD
= ÂŊÃABÃOP + ÂŊÃDCÃOQ
= ÂŊÃABÃOP + ÂŊÃABÃOQ [âĩÂ AB = DC]
= ÂŊÃABÃ(OP + OQ)
= ÂŊÃABÃPQ
= ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2 à (ÎAOB + ACOD)
= 2 à 16 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
= 32 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (c) 32 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
Q21. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(iv) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D, BD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E āĻāĻŦāĻ AE-āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ O; BOE āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ-
(a) 1/3 à ABC āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
(b) Âŧ à ABC āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
(c) 1/6 à ABC āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
(d) 1/8 à ABC āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻāϤā§āϤāϰāĻ (d) 1/8 à ABC āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ

ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻž
â´ ÎABD = ÂŊ Ã ÎABC
ABD āϤā§āϰāĻŋāĻā§āĻā§āϰ AE āĻŽāϧā§āϝāĻŽāĻž
â´ ÎABE = ÂŊ Ã ÎABD
= ÂŊ Ã ÂŊ Ã ÎABC
= Âŧ Ã ÎABC
â´ ÎABE = Âŧ Ã ÎABC
ABE āϤā§āϰāĻŋāĻā§āĻā§āϰ BO āĻŽāϧā§āϝāĻŽāĻž
â´ ÎBOE = ÂŊ Ã ÎABE
= ÂŊ Ã Âŧ Ã ÎABC
= 1/8 Ã ÎABC
āĻāϤā§āϤāϰāĻ (d) 1/8 à ABC āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
Q21. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(v) āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰ, āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ āĻāĻŦāĻ āĻāĻāĻāĻŋ āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰ āĻāĻāĻ āĻā§āĻŽāĻŋ āĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞā§āϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻāĻŦāĻ āϤāĻžāĻĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P, R āĻ T āĻšāϞā§,
(a) P = R = 2T
(b) P = R = T/2
(c) 2P = 2R = T
(d) P = R = T
āĻāϤā§āϤāϰāĻ (a) P = R = 2T
āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰ, āĻāĻŦāĻ āĻāĻāĻāĻŋ āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰ āĻāĻāĻ āĻā§āĻŽāĻŋ āĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞā§āϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāĻ¤Â āĻšāϞā§, āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2 à āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞÂ
â´ P = 2T ….(1)
āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰ, āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ āϝāĻĻāĻŋ āĻāĻāĻ āĻā§āĻŽāĻŋ āĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āϝā§āĻāϞā§āϰ āĻŽāϧā§āϝ⧠āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻšā§, āϤāĻžāĻšāϞ⧠āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ [âĩ āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ āĻāĻ āϧāϰāύā§āϰ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ]
â´ P = R ….(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
P = R = 2T
āĻāϤā§āϤāϰāĻ (a) P = R = 2T
Q22. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻāϤā§āϤāϰāĻāĻŋāϤā§āϤāĻŋāĻ āĻĒā§āϰāĻļā§āύāĻ
(i) ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ D āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ AB āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦ DE āĻāĻŦāĻ B āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ AD āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦ BF; AB = 10 āϏā§āĻŽāĻŋ., AD = 8 āϏā§āĻŽāĻŋ. āĻāĻŦāĻ DE = 6 āϏā§āĻŽāĻŋ. āĻšāϞā§, BF -āĻāϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AB = DC = 10 āϏā§āĻŽāĻŋ.
ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž
= AB Ã DE
= 10 à 6 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
= 60 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āϧāϰāĻŋ, BF = x āϏā§āĻŽāĻŋ.
āĻāĻŦāĻžāϰ ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= āĻā§āĻŽāĻŋ à āĻāĻā§āĻāϤāĻž
= DC Ã BF
= 10 à x āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
â´ 10x =Â 60
x = 6
āĻāϤā§āϤāϰāĻ BF = 6 āϏā§āĻŽāĻŋ.
Q22. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻāϤā§āϤāϰāĻāĻŋāϤā§āϤāĻŋāĻ āĻĒā§āϰāĻļā§āύāĻ
(ii) ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ 100 āĻŦāϰā§āĻāĻāĻāĻ; BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ P; ABP āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

AC āĻāϰā§āĻŖ āĻāĻžāύāĻž āĻšāϞāĨ¤
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻāϰā§āĻŖ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻā§ āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύ āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§ āĻŦāĻŋāĻāĻā§āϤ āĻāϰā§ā§ˇ
â´Â ÎABC = ÎADC
â´ ÎABC = ÂŊ à ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à 100 āĻŦāϰā§āĻāĻāĻāĻ
= 50 āĻŦāϰā§āĻāĻāĻāĻ
ÎABC āĻāϰ AP āĻŽāϧā§āϝāĻŽāĻž
â´Â ÎABP = ÂŊ Ã ÎABC
= ÂŊ à 50 āĻŦāϰā§āĻāĻāĻāĻ
= 25 āĻŦāϰā§āĻāĻāĻāĻ
āĻāϤā§āϤāϰāĻ ABP āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ 25 āĻŦāϰā§āĻāĻāĻāĻ⧎
Q22. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻāϤā§āϤāϰāĻāĻŋāϤā§āϤāĻŋāĻ āĻĒā§āϰāĻļā§āύāĻ
(iii) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻž āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ P āĻāĻŽāύ āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ āϝāĻžāϤ⧠ÎADP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ : ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2 : 3 āĻšāϝāĻŧāĨ¤ ÎPDC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ : ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

ÎADP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ : ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2 : 3
ÎABD āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 3/2 à ÎADP āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ …..(1)
ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻž
â´ ÎABD = ÎACD = ÂŊ Ã ÎABC ……(2)
â´ ÎACD = 3/2Â Ã ÎADPÂ
āĻŦāĻž, ÎADP + ÎPDC = 3/2 à ÎADP
āĻŦāĻž, 3/2 à ÎADP â ÎADP = ÎPDC
āĻŦāĻž, ÂŊ à ÎADP = ÎPDC
ÎPDC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ : ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à ÎADP : 2 à ÎABD [(2) āύāĻ āĻāϰ āϏāĻžāĻšāĻžāϝā§āϝā§]
= ÂŊ à ÎADP : 2 à 3/2 à ÎADP [(1) āύāĻ āĻāϰ āϏāĻžāĻšāĻžāϝā§āϝā§]
= ÂŊ : 3
= 1 : 6
āĻāϤā§āϤāϰāĻ ÎPDC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ : ÎABC āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 1 : 6
Q22. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻāϤā§āϤāϰāĻāĻŋāϤā§āϤāĻŋāĻ āĻĒā§āϰāĻļā§āύāĻ
(iv) ABDE āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤ F, ED āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ā§ˇ ABD āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ 20 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ. āĻšāϞā§, AEF āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

ABDE āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ AD āĻāϰā§āĻŖ
ÎABD = ÎADEÂ
â´ ÎADE = 20 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāĻŦāĻžāϰ, ADE āϤā§āϰāĻŋāĻā§āĻā§āϰ AF āĻŽāϧā§āϝāĻŽāĻž
â´Â ÎAEF = ÂŊ Ã ÎADE
= ÂŊ à 20 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
= 10 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ AEF āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ 10 āĻŦāϰā§āĻāϏā§āĻŽāĻŋ.
Q22. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻāϤā§āϤāϰāĻāĻŋāϤā§āϤāĻŋāĻ āĻĒā§āϰāĻļā§āύāĻ
(v) PQRS āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤ X āĻāĻŦāĻ Y āϝāĻĨāĻžāĻā§āϰāĻŽā§ PQ āĻāĻŦāĻ SR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤ āĻāϰā§āĻŖ SQ āϝā§āĻā§āϤ āĻāϰāĻŋāĨ¤ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ XQRY āĻāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ : QSR āϤā§āϰāĻŋāĻā§āĻāĻžāĻāĻžāϰ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ QS āĻāϰā§āĻŖ
â´ PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 2 à ÎQSR
āĻāĻŦāĻžāϰ, X, Y āϝāĻĨāĻžāĻā§āϰāĻŽā§ PQ āĻ SR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ XQRY āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ à PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
= ÂŊ Ã 2 Ã ÎQSR
= ÎQSR āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ
āĻāϤā§āϤāϰāĻ XQRY āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ : ÎQSR āĻāϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = 1 : 1
Koshe Dekhi 12 Class 9
Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9.
Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9.
Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9.
Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9.
Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9, Koshe Dekhi 12 Class 9.
āĻāϰāĻ āĻĻā§āĻā§ :
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻžāĻļ āύāĻŦāĻŽ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύ
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻžāĻļ āĻĻāĻļāĻŽ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύÂ
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻž āϏāĻĒā§āϤāĻŽ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύÂ
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻž āώāώā§āĻ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύÂ