Koshe Dekhi 9 Class 9
Koshe Dekhi 9 Class 9
Q1. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D; D āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ CA āĻāĻŦāĻ BA āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ BA āĻāĻŦāĻ CA āĻŦāĻžāĻšā§āĻā§ āϝāĻĨāĻā§āϰāĻŽā§ E āĻ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, EF = ÂŊ BC
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D; D āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ CA āĻāĻŦāĻ BA āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ BA āĻāĻŦāĻ CA āĻŦāĻžāĻšā§āĻā§
āϝāĻĨāĻžāĻā§āϰāĻŽā§ E āĻ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, EF = ÂŊ BC
āĻĒā§āϰāĻŽāĻžāĻŖāĻ ÎABC -āĻāϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D āĻāĻŦāĻ DE || CA
â´ E, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻāĻŦāĻžāϰ, ÎABC -āĻāϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D āĻāĻŦāĻ DF || BA
â´ F, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻāĻāύ, ÎABC -āĻāϰ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ F.
â´ EF = ÂŊ BC [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q2. D āĻāĻŦāĻ E āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧ āϝāĻĨāĻžāĻā§āϰāĻŽā§ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AB āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ āĻāĻŽāύ āĻāĻžāĻŦā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āϝā§, AD = Âŧ AB āĻāĻŦāĻ AE = Âŧ AC; āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, DE || BC āĻāĻŦāĻ DE = Âŧ BC
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ÎABC āĻāϰ D āĻāĻŦāĻ E āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧ āĻāĻŽāύ āĻāĻžāĻŦā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āϝā§, AD = Âŧ AB āĻāĻŦāĻ AE = Âŧ AC
āĻ āĻā§āĻāύāĻ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ F āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ G āύā§āĻāϝāĻŧāĻž āĻšāϞ āĻāĻŦāĻ F, G āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞ⧎
āĻĒā§āϰāĻŽāĻžāĻŖāĻ ÎABC āĻāϰ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ F āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ GāĨ¤ [āĻ āĻā§āĻāύāĻžāύā§āϏāĻžāϰā§]
â´ FG || BC āĻāĻŦāĻ FG = ÂŊ BC
F, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ AE = Âŧ AC
â´ AD = ÂŊ AF
āĻāĻŦāĻžāϰ, G, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ AD = Âŧ AB
â´ AE = ÂŊ AG
āϏā§āϤāϰāĻžāĻ, ÎAFG āĻāϰ AF āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D āĻāĻŦāĻ AG āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E
â´Â DE || FG
āĻ āϰā§āĻĨāĻžā§ DE || BC [âĩ FG || BC] [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
āĻāĻŦāĻ DE = ÂŊ FG
= ÂŊ Ã ÂŊ BC [âĩ FG = ÂŊ BC]
= Âŧ BCÂ
â´ DE = Âŧ BC [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q3. X āĻāĻŦāĻ Z āϝāĻĨāĻžāĻā§āϰāĻŽā§ PQR āϤā§āϰāĻŋāĻā§āĻā§āϰ QR āĻāĻŦāĻ QP āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ā§ˇ QP āĻŦāĻžāĻšā§āĻā§ S āĻŦāĻŋāύā§āĻĻā§ āĻĒāϰā§āϝāύā§āϤ āĻāĻŽāύāĻāĻžāĻŦā§ āĻŦāϰā§āϧāĻŋāϤ āĻāϰāĻž āĻšāϞ āϝāĻžāϤ⧠PS = ZP āĻšāϝāĻŧ⧎ SX, PR āĻŦāĻžāĻšā§āĻā§ Y āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, PY = Âŧ PR.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ POR āϤā§āϰāĻŋāĻā§āĻā§āϰ X, QR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Z, QP āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤ QP āĻā§ P āĻĒāϰā§āϝāύā§āϤ āĻŦāϰā§āϧāĻŋāϤ āĻāϰāĻž āĻšāϞ āĻāĻŦāĻ PS = ZP.Â
SX, PR āĻŦāĻžāĻšā§āĻā§ Y āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PY = Âŧ PR
āĻ āĻā§āĻāύāĻ X, Z āϝā§āĻā§āϤ āĻāϰāĻž āĻšāϞ⧎
āĻĒā§āϰāĻŽāĻžāĻŖāĻ ÎPQR āĻāϰ āĻŽāϧā§āϝā§,
X, QR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Z, QP āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
â´ ZX = ÂŊ PR ….(1)
āĻāĻŦāĻžāϰ, ÎSZX āĻāϰ āĻŽāϧā§āϝā§,
ZX || PYÂ [âĩ ZX || PR]
āĻāĻŦāĻ P, ZS āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§Â [âĩ PS = ZP]
â´ PY = ÂŊ ZXÂ
āĻŦāĻž, PY = ÂŊ à ÂŊ PR [(1) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
â´ PY = Âŧ PR [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q4. āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, āĻāĻāĻāĻŋ āϏāĻŽāύā§āϤāϰāĻŋāĻā§āϰ āĻŦāĻžāĻšā§āĻā§āϞāĻŋāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĻā§āϞāĻŋ āĻĒāϰāĻĒāϰ āϝā§āĻā§āϤ āĻāϰāϞ⧠āϝ⧠āĻāϤā§āϰā§āĻā§āĻ āĻāĻ āĻŋāϤ āĻšā§, āϏā§āĻāĻŋ āĻāĻāĻāĻŋ āϏāĻžāĻŽāύā§āϤāϰāĻŋāĻāĨ¤
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ āϧāϰāĻŋ, ABCD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤ P, Q, R āĻ S āĻšāϞ āϝāĻĨāĻžāĻā§āϰāĻŽā§ AB, BC, CD āĻ DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PQRS āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤
āĻ āĻā§āĻāύāĻ AC āĻāϰā§āĻŖ āĻ āĻā§āĻāύ āĻāϰāϞāĻžāĻŽā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖāĻ ÎCDA āĻāϰ –
R, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ S, DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ SR || AC āĻāĻŦāĻ SR = ÂŊ AC
āĻāĻŦāĻžāϰ, ÎABC āĻāϰ –
P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Q, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PQ || AC āĻāĻŦāĻ PQ = ÂŊ AC
āϝā§āĻšā§āϤā§, SR || AC āĻāĻŦāĻ PQ || AC
â´ PQ || SR
āĻāĻŦāĻžāϰ, āϝā§āĻšā§āϤā§Â SR = ÂŊ AC āĻāĻŦāĻ PQ = ÂŊ AC
â´ PQ = SR
â´ āĻāĻŽāϰāĻž āĻĒā§āϞāĻžāĻŽ, PQRS āĻāϤā§āϰā§āĻā§āĻā§āϰ PQ ||SR āĻāĻŦāĻ PQ = SR.
â´ PQRS āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q5. āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻāĻžāϰ āĻāĻŋāϤā§āϰā§āϰ āĻŦāĻžāĻšā§āĻā§āϞāĻŋāϰ āĻŽāϧā§āϝā§āĻŦāĻŋāύā§āĻĻā§āĻā§āϞāĻŋ āĻĒāϰāĻĒāϰ āϝā§āĻā§āϤ āĻšāϝāĻŧā§ āϝ⧠āĻāϤā§āϰā§āĻā§āĻāĻāĻŋ āĻāĻ āĻŋāϤ āĻšāϝāĻŧ, āϏā§āĻāĻŋ āĻāĻāĻāĻŋ āϰāĻŽā§āĻŦāϏ, āĻāĻŋāύā§āϤ⧠āĻŦāϰā§āĻāĻžāĻāĻžāϰ āĻāĻŋāϤā§āϰ āύāϝāĻŧ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ āϧāϰāĻŋ, ABCD āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰāĨ¤ P, Q, R āĻ S āĻšāϞ āϝāĻĨāĻžāĻā§āϰāĻŽā§ AB, BC, CD āĻ DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PQRS āĻāĻāĻāĻŋ āϰāĻŽā§āĻŦāϏ āĻāĻŋāύā§āϤ⧠āĻŦā§°ā§āĻāĻā§āώā§āϤā§āϰ āύāϝāĻŧ⧎
āĻ āĻā§āĻāύāĻ AC āĻāϰā§āĻŖ āĻ āĻā§āĻāύ āĻāϰāϞāĻžāĻŽā§ˇ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎCDA āĻāϰ –
R, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ S, DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ SR || AC āĻāĻŦāĻ SR = ÂŊ AC ……(1)
āĻāĻŦāĻžāϰ, ÎABC āĻāϰ –
P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Q, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PQ || AC āĻāĻŦāĻ PQ = ÂŊ AC …..(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
PQ || SR āĻāĻŦāĻ PQ = ÂŊ SR
â´ PQRS āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤
āĻāĻāύ āϝā§āĻšā§āϤā§Â ABCD āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ
â´ AD = BC
āĻŦāĻž, ÂŊ AD = ÂŊ BC
â´ AS = BQ ….(3) [âĩ S, AD -āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Q, BC -āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§]
ÎAPS āĻāĻŦāĻ ÎBPQ āĻāϰ-
AP = BP [âĩ P, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§]
AS = BQ [(3) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
â PAS = â PBQ [āĻāĻāϝāĻŧā§āĻ āϏāĻŽāĻā§āĻŖ]
â´ ÎAPS â ÎBPQ [S-A-S āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
â´ SP = PQ [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻŦāĻžāĻšā§]
â APS = â BPQ [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻā§āĻŖ]
āĻāĻāύ āϝā§āĻšā§āϤ⧠PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ SP = PQ
â´ PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻāĻŋ āĻāĻāĻāĻŋ āϰāĻŽā§āĻŦāϏ⧎
āĻāĻāύ āϏāĻŽāĻā§āĻŖā§ ÎAPS āĻāϰ
â B āϏāĻŽāĻā§āĻŖ āĻāĻŦāĻ AS â AP [âĩ AB â AD]
â´ â APS â â BPQ
â´ â APS â 45°
PQRS āϰāĻŽā§āĻŦāϏā§āϰ
â SPQ = 180° â â APS â â BPQ
= 180° â 2â APS [âĩ â APS = â BPQ]
â 90° [âĩ â APS â 45°]
PQRS āĻāĻāĻāĻŋ āϰāĻŽā§āĻŦāϏ āĻāĻŋāύā§āϤ⧠āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰ āύāϝāĻŧ⧎ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q6. āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻžāĻāĻžāϰ āĻāĻŋāϤā§āϰā§āϰ āĻŦāĻžāĻšā§āĻā§āϞāĻŋāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĻā§āϞāĻŋ āĻĒāϰāĻĒāϰ āϝā§āĻā§āϤ āĻšāϝāĻŧā§ āϝ⧠āĻāϤā§āϰā§āĻā§āĻāĻāĻŋ āĻāĻ āĻŋāϤ āĻšāϝāĻŧ, āϏā§āĻāĻŋ āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻžāĻāĻžāϰ āĻāĻŋāϤā§ā§°ā§ˇ
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§ā§°ā§ˇ P, Q, R āĻ S āĻšāϞ āϝāĻĨāĻžāĻā§āϰāĻŽā§ AB, BC, CD āĻ DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PQRS āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§ā§°
āĻ āĻā§āĻāύāĻ AC, BD āĻāϰā§āĻŖ āĻ āĻā§āĻāύ āĻāϰāϞāĻžāĻŽā§ˇ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎCDA āĻāϰ –
R, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ S, DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ SR || AC āĻāĻŦāĻ SR = ÂŊ AC ……(1)
āĻāĻŦāĻžāϰ, ÎABC āĻāϰ –
P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Q, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PQ || AC āĻāĻŦāĻ PQ = ÂŊ AC …..(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
PQ || SR āĻāĻŦāĻ PQ = ÂŊ SR
â´ PQRS āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤
ÎABD āĻāϰ –
P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ S, DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PS || BD āĻāĻŦāĻ PS = ÂŊ BD ….(3)
ABCD āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰ āϝāĻžāϰ AC = BD
āĻŦāĻž, ÂŊ AC = ÂŊ BD
â´ PQ = PS
PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ PQ = PS
PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻāĻŋ āĻāĻāĻāĻŋ āϰāĻŽā§āĻŦāϏāĨ¤
āĻāĻāύ PMON āĻāϤā§āϰā§āĻā§āĻā§āϰ
PM || ONÂ [âĩ PQ || AC]
NP || OMÂ [âĩ PS || BD]
â´Â PMON āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
PMON āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ â MON = â MPN
āĻāĻŦāĻžāϰ, â MON = â AOB = 90° [âĩ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ āϏāĻŽāĻā§āĻŖā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰā§]
â´ â MPN = 90°
â´ PQRS āϰāĻŽā§āĻŦāϏā§āϰ â SPQ = â MPN = 90°
â´PQRS āϰāĻŽā§āĻŦāϏāĻāĻŋ āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰāĨ¤ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q7. āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, āĻāĻāĻāĻŋ āϰāĻŽā§āĻŦāϏā§āϰ āĻŦāĻžāĻšā§āĻā§āϞāĻŋāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĻā§āϞāĻŋ āĻĒāϰāĻĒāϰ āϝā§āĻā§āϤ āĻšāϝāĻŧā§ āϝ⧠āĻāϤā§āϰā§āĻā§āĻāĻāĻŋ āĻāĻ āĻŋāϤ āĻšāϝāĻŧ, āϏā§āĻāĻŋ āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻāĻžāϰ āĻāĻŋāϤā§ā§°ā§ˇ
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āĻāĻāĻāĻŋ āϰāĻŽā§āĻŦāϏ⧎ P, Q, R āĻ S āĻšāϞ āϝāĻĨāĻžāĻā§āϰāĻŽā§ AB, BC, CD āĻ DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, PQRS āĻāĻāĻāĻŋ āĻāϝāĻŧāϤāĻā§āώā§āϤā§āϰ⧎
āĻ āĻā§āĻāύāĻ AC, BD āĻāϰā§āĻŖ āĻ āĻā§āĻāύ āĻāϰāϞāĻžāĻŽā§ˇ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎCDA āĻāϰ –
R, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ S, DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ SR || AC āĻāĻŦāĻ SR = ÂŊ AC ……(1)
āĻāĻŦāĻžāϰ, ÎABC āĻāϰ –
P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Q, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PQ || AC āĻāĻŦāĻ PQ = ÂŊ AC …..(2)
(1) āύāĻ āĻ (2) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
PQ || SR āĻāĻŦāĻ PQ = ÂŊ SR
â´ PQRS āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĨ¤
ÎABD āĻāϰ –
P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ S, DA āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PS || BD āĻāĻŦāĻ PS = ÂŊ BD ….(3)
āĻāĻāύ PMON āĻāϤā§āϰā§āĻā§āĻā§āϰ
PM || ONÂ [âĩ PQ || AC]
NP || OMÂ [âĩ PS || BD]
â´Â PMON āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
PMON āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ â MON = â MPN
āĻāĻŦāĻžāϰ, â MON = â AOB = 90° [âĩ āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ āϏāĻŽāĻā§āĻŖā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰā§]
â´ â MPN = 90°
â´ PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ â SPQ = â MPN = 90°
â´ PQRS āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻāĻāĻŋ āĻāĻāĻāĻŋ āĻā§āϤāĻā§āώā§āϤā§āϰ āĨ¤ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q8. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AB āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ D āĻāĻŦāĻ E; P āĻāĻŦāĻ Q āϝāĻĨāĻžāĻā§āϰāĻŽā§ CD āĻ BD āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, BE āĻāĻŦāĻ PQ āĻĒāϰāϏā§āĻĒāϰāĻā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰā§ā§ˇ
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AB āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ D āĻāĻŦāĻ E; P āĻāĻŦāĻ Q āϝāĻĨāĻžāĻā§āϰāĻŽā§ CD āĻāĻŦāĻ BD –āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻ āĻā§āĻāύāĻ D, E āĻ E, P āϝā§āĻā§āϤ āĻāϰāϞāĻžāĻŽā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖāĻ ÎABC āĻāϰ –
D, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ E, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´Â DE || BC āĻāĻŦāĻ DE = ÂŊ BC ….(1)
ÎDBC āĻāϰ –
P, BD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Q, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PQ || BC āĻāĻŦāĻ PQ = ÂŊ BC …..(2)
(1) āύāĻ āĻ ( 2 ) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ,
DE || PQ āĻāĻŦāĻ DE = PQ
PQDE āĻāϤā§āϰā§āĻā§āĻā§āϰ DE || PQ āĻāĻŦāĻ DE = PQ
â´ PQDE āĻāϤā§āϰā§āĻā§āĻāĻāĻŋ āĻāĻāĻāĻŋ āϏāĻžāĻŽāύā§āϤāϰāĻŋāĻāĨ¤
ÎBDE āĻāϰ Q, BD -āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ QM || DE  [âĩ DE || PQ]
â´ M, PQ āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ QM = ÂŊ DE
āĻŦāĻž, QM = ÂŊ PQ [âĩ DE = PQ]
â´ M, PQ āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ M, BE āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ BE āĻāĻŦāĻ PQ āĻĒāϰāϏā§āĻĒāϰāĻā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰā§āĨ¤ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q9. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ â ABC āĻāϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻā§āϰ āĻāĻĒāϰ AD āϞāĻŽā§āĻŦāĨ¤ D āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ BC āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ DE āĻāĻžāύāĻž āĻšāϞ āϝāĻž AC āĻŦāĻžāĻšā§āĻā§ E āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻā§ āĻāϰā§āĨ¤ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, AE = EC
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ â ABC āĻāϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻā§āϰ āĻāĻĒāϰ AD āϞāĻŽā§āĻŦ⧎ D āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ BC āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ DE āĻāĻžāύāĻž āĻšāϞ āϝāĻž AC āĻŦāĻžāĻšā§āĻā§ E āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻā§ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, AE = EC
āĻ āĻā§āĻāύāĻ AD āĻŦāϰā§āϧāĻŋāϤ āĻāϰāĻž āĻšāϞ āϝāĻž BC āĻŦāĻžāĻšā§āĻā§ P āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāύāĻ āϝā§āĻšā§āϤā§, AP âĨ BG
â´ â ADB = â BDP = 90° ….(1)
āϏā§āϤāϰāĻžāĻ, ÎABD āĻāĻŦāĻ ÎPBD āĻāĻāĻāĻŋ āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ
â´ â BAD = 90° â â ABD āĻāĻŦāĻ â BPD = 90° â â PBD
āĻāĻŦāĻžāϰ, â ABD = â PBD [BG, â ABC āĻāϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻ]
â´ â BAD = â BPD …..(2)
ÎABD āĻāĻŦāĻ ÎPBD āĻāϰ –
â ADB = â BDP [(1) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
â BAD = â BPD [(2)āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
BD āϏāĻžāϧāĻžāϰāĻŖ āĻŦāĻžāĻšā§
â´ ÎABD â ÎPBD [āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ A-A-S āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
AD = DP [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻŦāĻžāĻšā§]
āĻ āϰā§āĻĨāĻžā§, D, AP āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
ÎAPC āĻāϰ D, AP āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ DE || PC [âĩ DE || BC]
â´Â E, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
āϏāϤāϰāĻžāĻ, AE = EC [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q10. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻžā§ˇ B āĻ C āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ AD -āĻāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāĻāĻļ BR āĻāĻŦāĻ CT āĻāĻžāύāĻž āĻšāϞ āϝāĻžāϰāĻž āĻŦāϰā§āϧāĻŋāϤ BA āĻāĻŦāĻ CA āĻŦāĻžāĻšā§āϰ āϏāĻā§āĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ T āĻāĻŦāĻ R āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻŽāĻŋāϞāĻŋāϤ āĻšāϝāĻŧ⧎ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§,
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻžā§ˇÂ AD || RB āĻāĻŦāĻ AD || TC
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§,
āĻĒā§āϰāĻŽāĻžāύāĻ ÎBCR āϤā§āϰāĻŋāĻā§āĻā§āϰ D, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ AD || RB
â´ AD = ÂŊ RB ….(1)
āĻāĻŦāĻžāϰ, BCT āϤā§āϰāĻŋāĻā§āĻā§āϰ D, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ AD || TC
â´Â AD = ÂŊ TC ….(2)
(1) āύāĻ āĻ ( 2 ) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
ÂŊ RB = ÂŊ TC
â´ RB = TC
āĻāĻāύ,
āĻŦāĻž,
â´ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q11. ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ AB || DC āĻāĻŦāĻ AB>DC; E āĻ F āϝāĻĨāĻžāĻā§āϰāĻŽā§ āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ AC āĻ BD āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤Â āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, EF = ÂŊ(AB â DC)
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ AB || DC āĻāĻŦāĻ AB>DC; E āĻ F āϝāĻĨāĻžāĻā§āϰāĻŽā§ āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ AC āĻ BD āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤
āĻ āĻā§āĻāύāĻ D, E āϝā§āĻ āĻāϰāϞāĻžāĻŽā§ˇ āĻŦāϰā§āϧāĻŋāϤāĻžāĻāĻļ DE, AB āĻŦāĻžāĻšā§āĻā§ R āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāύāĻ ÎAER āĻāĻŦāĻ ÎCED āĻāϰ –
â AER = āĻŦāĻŋāĻĒā§āϰāϤā§āĻĒ â DEC
â EAR = āĻāĻāĻžāύā§āϤāϰ â EDC [âĩ AD||BC āĻāĻŦāĻ DR āĻā§āĻĻāĻ]
AE = EC [âĩ E, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§]
â´ ÎAER â ÎCED [āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ A-A-S āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
AR = DC [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻŦāĻžāĻšā§] ….(1)
āĻāĻŦāĻ DE = ER [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻŦāĻžāĻšā§]
â´ E, DR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
āĻāĻāύ ÎBDR āĻāϰ E, DR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ F, BD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ EF = ÂŊ RB
= ÂŊ (AB â AR)
= ÂŊ (AB â DC) [(1)āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ]
â´ EF = ÂŊ (AB â DC) [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q12. AB āϏāϰāϞāϰā§āĻāĻžāĻāĻļā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ C āĻāĻŦāĻ PQ āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžā§ˇ A, B āĻ C āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ PQ āϏāϰāϞāϰā§āĻāĻžāϰ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āĻĻā§āϰāϤā§āĻŦ āϝāĻĨāĻžāĻā§āϰāĻŽā§ AR, BS āĻāĻŦāĻ CT; āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, AR + BS = 2 CT
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ AB āϏāϰāϞāϰā§āĻāĻžāĻāĻļā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ C āĻāĻŦāĻ PQ āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžā§ˇ A, B āĻ C āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ PQ āϏāϰāϞāϰā§āĻāĻžāϰ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āĻĻā§āϰāϤā§āĻŦ āϝāĻĨāĻžāĻā§āϰāĻŽā§ AR, BS āĻ CT.
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, AR + BS = 2 CT
āĻĒā§āϰāĻŽāĻžāύāĻ āϝā§āĻšā§āϤā§, AR, TC āĻ BS āĻāϰāĻž āĻĒā§āϰāϤā§āϝā§āĻā§āĻ A, B āĻ C āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ PQ āϏāϰāϞāϰā§āĻāĻžāϰ āĻā§āώā§āĻĻā§āϰāϤāĻŽ āĻĻā§āϰāϤā§āĻŦāĨ¤
â´ AR, TC āĻ BS āĻāϰāĻž āĻĒā§āϰāϤā§āϝā§āĻā§āĻ āĻĒāϰāϏā§āĻĒāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ
āϏā§āϤāϰāĻžāĻ, AR || CT, BS || CT āĻāĻŦāĻ AR || BS
â´ ARSB āĻāĻāĻāĻŋ āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽ
ARSB āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ C, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ AR || BS
â´ T, RS āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ CT = ÂŊ (AR + BS)
â´Â AR + BS = 2 CT [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q13. ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ D; A āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ PQ āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāĨ¤ B, C āĻāĻŦāĻ D āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ PQ āϏāϰāϞāϰā§āĻāĻžāϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦ āϝāĻĨāĻžāĻā§āϰāĻŽā§ BL, CM āĻāĻŦāĻ DN; āĻĒā§ā§°āĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, DL = DM.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻĒā§āϰāĻŽāĻžāύāĻ BL, CM āĻāĻŦāĻ DN āĻĒā§āϰāϤā§āϝā§āĻā§āĻ PQ āϏāϰāϞāϰā§āĻāĻžāϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦ⧎
āϏā§āϤāϰāĻžāĻ, āϤāĻžāϰāĻž āĻĒāϰāϏā§āĻĒāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ⧎
â´ BL || DN || CN
â´ BCML āĻāĻāĻāĻŋ āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽāĨ¤
BCML āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ DN || CN āĻāĻŦāĻ D, BC āĻŦāĻžāĻšā§ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ā§ˇ
â´Â N, LM āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
ÎDNL āĻāĻŦāĻ ÎDNM āĻāϰ –
LN = NM [âĩ N, LM āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§]
â DNL = â DNM [DN âĨ PQ]
DN āϏāĻžāϧāĻžāϰāĻŖ āĻŦāĻžāĻšā§
â´ ÎDNL â ÎDNM [āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ S-A-S āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
â´ DL = DM [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻŦāĻžāĻšā§] [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q14. ABCD āĻāĻāĻāĻŋ āĻŦāϰā§āĻāĻžāĻāĻžāϰ āĻāĻŋāϤā§āϰāĨ¤ AC āĻāĻŦāĻ BD āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ OāĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ â BAC āĻāϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻ BO-āĻā§ P āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻāĻŦāĻ BC -āĻā§ Q āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāĻŋ āϝā§, OP= ÂŊ CQ.
āϏāĻŽāĻžāϧāĻžāύāĻ

āĻŦāĻŋāĻļā§āώ āύāĻŋāϰā§āĻŦāĻāύāĻ ABCD āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ AC āĻāĻŦāĻ BD āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ ā§Ļ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ <BAC āĻāϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻ BO-āĻā§ P āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻāĻŦāĻ BC āĻā§ Q āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ
āĻĒā§āϰāĻŽāĻžāĻŖ āĻāϰāϤ⧠āĻšāĻŦā§ āϝā§, OP= ÂŊ CQ
āĻ āĻā§āĻāύ: AQ āĻā§ āĻŦāϰā§āϧāĻŋāϤ āĻāϰāĻž āĻšāϞāĨ¤ C āĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ OB āĻāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž āĻ āĻā§āĻāύ āĻāϰāϞāĻžāĻŽ āϝāĻž āĻŦāϰā§āϧāĻŋāϤ AQ āĻā§ G āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĻā§āĨ¤
āĻĒā§āϰāĻŽāĻžāύāĻ AGC āϤā§āϰāĻŋāĻā§āĻā§āϰ O, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ OP || CG [āĻ āĻā§āĻāύāĻžāύā§āϏāĻžāϰā§, OB || CG]
â´ OP = ÂŊÂ CGÂ …..(1)
ABCD āĻŦāϰā§āĻāĻā§āώā§āϤā§āϰā§āϰ â ABC = 90°, â BCD = 90°
āϧāϰāĻŋ, â BAQ = â CAQ = θ
ÎABQ āĻĨā§āĻā§ āĻĒāĻžāĻ,
â BQA = 180° â â ABC â â BAQ
āĻŦāĻž, â BQA = 180° â 90° â θ
â´ â BQA = 90° â θ
â´ â GQC = āĻŦāĻŋāĻĒā§āϰāϤā§āĻĒ â BQA = 90° â θ
āϝā§āĻšā§āϤā§Â â AOP = 90°
āϏā§āϤāϰāĻžāĻ, ÎAOQ āĻāĻāĻāĻŋ āϏāĻŽāĻā§āĻŖā§ āϤā§āϰāĻŋāĻā§āĻ
â´ â APO = 90° â â PAO
= 90° â â CAQ
= 90° â θ
āĻāĻŦāĻžāϰ, â PGC = āĻ āύā§āϰā§āĻĒ â APO [âĩ OP || CG āĻāĻŦāĻ AG āĻā§āĻĻāĻ]
= 90° â θ
â´ â QGC = 90° â θ
GQC āϤā§āϰāĻŋāĻā§āĻā§āϰ â GQC = 90° â θ āĻāĻŦāĻ â QGC = 90° â θ
â´ â GQC = â QGC
āϏā§āϤāϰāĻžāĻ, CQ = CG ….(2)
(1) āύāĻ āĻ ( 2 ) āύāĻ āĻĨā§āĻā§ āĻĒāĻžāĻ
OP = ÂŊ CQ [āĻĒā§āϰāĻŽāĻžāύāĻŋāϤ]
Q15. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(i) PQR āϤā§āϰāĻŋāĻā§āĻā§āϰ â PQR = 90° āĻāĻŦāĻ PR = 10 āϏā§āĻŽāĻŋ.⧎ PR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ S āĻšāϞā§, QS āĻāϰ āĻĻā§āϰā§āĻā§āϝ –
(a) 4 āϏā§āĻŽāĻŋ.
(b) 5 āϏā§āĻŽāĻŋ.
(c) 6 āϏā§āĻŽāĻŋ.
(d) 3 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (b) 5 āϏā§āĻŽāĻŋ.

PR = 10 āϏā§āĻŽāĻŋ.
â PQR = 90° āĻāĻŦāĻ āĻ āϤāĻŋāĻā§āĻ PR āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ S āĻšāϞā§
QS = ÂŊ PR = ÂŊ à 10 āϏā§āĻŽāĻŋ. = 5 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (b) 5 āϏā§āĻŽāĻŋ.
Q15. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(ii) ABCD āĻā§āϰāĻžāĻĒāĻŋāĻāĻŋāϝāĻŧāĻžāĻŽā§āϰ ABIIDC āĻāĻŦāĻ AB = 7 āϏā§āĻŽāĻŋ āĻ DC = 5 āϏā§āĻŽāĻŋ.āĨ¤ AD āĻ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ E āĻ F āĻšāϞā§, EF āĻāϰ āĻĻā§āϰā§āĻā§āϝ –
(a) 5 āϏā§āĻŽāĻŋ.
(b) 7 āϏā§āĻŽāĻŋ.
(c) 6 āϏā§āĻŽāĻŋ.
(d) 12 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (c) 6 āϏā§āĻŽāĻŋ.

E, AD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ F, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´Â EF = ÂŊ(AB + DC)
= ÂŊ (7 + 5) āϏā§āĻŽāĻŋ.
= 6 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (c) 6 āϏā§āĻŽāĻŋ.
Q15. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(iii) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻžāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E; āĻŦāϰā§āϧāĻŋāϤ BE, AC āĻā§ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ AC = 10.5 āϏā§āĻŽāĻŋ āĻšāϞā§, AF āĻāϰ āĻĻā§āϰā§āĻā§āϝ –
(a) 3 āϏā§āĻŽāĻŋ.
(b) 5 āϏā§āĻŽāĻŋ.
(c) 2.5 āϏā§āĻŽāĻŋ.
(d) 3.5 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (d) 3.5 āϏā§āĻŽāĻŋ.

ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻŽāϧā§āϝāĻŽāĻžāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E; āĻŦāϰā§āϧāĻŋāϤ BE, AC āĻā§ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰāϞā§
AF = 1/3 AC
= 1/3 à 10.5 āϏā§āĻŽāĻŋ.
= 3.5 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ (d) 3.5 āϏā§āĻŽāĻŋ.
Q15. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(iv) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC, CA āĻ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ D, E āĻ F; BE āĻ DF, X āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻāĻŦāĻ CF āĻ DE, Y āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰāϞā§, XY āĻāϰ āĻĻā§āϰā§āĻā§āϝ āϏāĻŽāĻžāύ –
(a) 1/2 BC
(b) 1/4 BC
(c) 1/3 BC
(d) 1/8 BC
āĻāϤā§āϤāϰāĻ (b) 1/4 BC

ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ F āĻāĻŦāĻ AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E
â´ EF = ÂŊ BC
āĻāĻŦāĻžāϰ, BDEF āĻāĻŦāĻ DCEF āĻāĻāϝāĻŧā§āĻ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
â´Â DF āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ X āĻāĻŦāĻ DE āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ Y
â´ XY = ÂŊ EF
= ÂŊ Ã ÂŊ BC
= Âŧ BC
āĻāϤā§āϤāϰāĻ (b) 1/4 BC
Q15. āĻŦāĻšā§ āĻŦāĻŋāĻāϞā§āĻĒā§āϝāĻŧ āĻĒā§āϰāĻļā§āύ (MCQ):
(v) ABCD āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ E; DE āĻāĻŦāĻ āĻŦāϰā§āϧāĻŋāϤ AB, F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻŽāĻŋāϞāĻŋāϤ āĻšāϝāĻŧ⧎ AF -āĻāϰ āĻĻā§āϰā§āĻā§āϝ āϏāĻŽāĻžāύ –
(a) 3/2 AB
(b) 2 AB
(c) 3 AB
(d) 5/4 AB
āĻāϤā§āϤāϰāĻ (b) 2 AB

ÎBEF āĻāĻŦāĻ ÎDCE āĻāϰ āĻŽāϧā§āϝā§
â BEF = āĻŦāĻŋāĻĒā§āϰāϤā§āĻĒ â CED
â BFE = āĻāĻāĻžāύā§āϤāϰ â CDE [âĩ AF || DC āĻāĻŦāĻ DF āĻā§āĻĻāĻ]
BE = EC [âĩ E, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§]
â´ ÎBEF â ÎDCE [āϏāϰā§āĻŦāϏāĻŽāϤāĻžāϰ A-A-S āĻļāϰā§āϤāĻžāύā§āϏāĻžāϰā§]
â´ BF = CD [āϏāϰā§āĻŦāϏāĻŽ āϤā§āϰāĻŋāĻā§āĻā§āϰ āĻ āύā§āϰā§āĻĒ āĻŦāĻžāĻšā§]
āĻāĻŦāĻžāϰ, AB = CD [âĩ ABCD āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ]
â´ BF = AB
AF = AB + BF
= AB + AB
= 2 AB
āĻāϤā§āϤāϰāĻ (b) 2 AB
Q16. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻĒā§āϰāĻļā§āύāĻ
(i) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AD āĻāĻŦāĻ BE āĻŽāϧā§āϝāĻŽāĻž āĻāĻŦāĻ BE -āĻāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻž DF, AC āĻŦāĻžāĻšā§āϰ āϏāĻā§āĻā§ F āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻŽāĻŋāϞāĻŋāϤ āĻšāϝāĻŧ⧎ AC āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ 8 āϏā§āĻŽāĻŋ āĻšāϞā§, CF āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

E, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ EC = ÂŊ AC = ÂŊ à 8 āϏā§āĻŽāĻŋ. = 4 āϏā§āĻŽāĻŋ.
BEC āϤā§āϰāĻŋāĻā§āĻā§āĻ°Â D, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ BE || DF
â´ F, EC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´Â CF = ÂŊ EC= ÂŊ à 4 āϏā§āĻŽāĻŋ. = 2 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ CF āĻŦāĻžāĻšā§āϰ āĻĻā§āϰā§āĻā§āϝ 2 āϏā§āĻŽāĻŋ.
Q16. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻĒā§āϰāĻļā§āύāĻ
(ii) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC, CA āĻāĻŦāĻ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ P, Q, R; āϝāĻĻāĻŋ AC = 21 āϏā§āĻŽāĻŋ., BC = 29 āϏā§āĻŽāĻŋ. āĻāĻŦāĻ AB = 30 āϏā§āĻŽāĻŋ. āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧠ARPQ āĻāϤā§āϰā§āĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

Q, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ QA = ÂŊ AC = ÂŊ à 21 āϏā§āĻŽāĻŋ. = 10.5 āϏā§āĻŽāĻŋ.
R, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ AR = ÂŊ AB = ÂŊ à 30 āϏā§āĻŽāĻŋ. = 15 āϏā§āĻŽāĻŋ.Â
Q, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ P, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PQ = ÂŊ AB = ÂŊ à 30 āϏā§āĻŽāĻŋ. = 15 āϏā§āĻŽāĻŋ.
āĻāĻŦāĻžāϰ, R, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ P, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ RP = = ÂŊ AC = ÂŊ à 21 āϏā§āĻŽāĻŋ. = 10.5 āϏā§āĻŽāĻŋ.
ARPQ āĻāϤā§āϰā§āĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž
= AR + RP + PQ + AQ
= (15 + 10.5 + 15 + 10.5) āϏā§āĻŽāĻŋ.
= 51 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ ARPQ āĻāϤā§āϰā§āĻā§āĻā§āϰ āĻĒāϰāĻŋāϏā§āĻŽāĻž 51 āϏā§āĻŽāĻŋ.
Q16. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻĒā§āϰāĻļā§āύāĻ
(iii) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ AC āĻŦāĻžāĻšā§āϰ āĻāĻĒāϰ D āϝā§-āĻā§āύ⧠āĻāĻāĻāĻŋ āĻŦāĻŋāύā§āĻĻā§ā§ˇ P, Q, X, Y āϝāĻĨāĻžāĻā§āϰāĻŽā§ AB, BC, AD āĻāĻŦāĻ DC āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§āĨ¤ PX = 5 āϏā§āĻŽāĻŋ. āĻšāϞā§, QY -āĻāϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

ABD āϤā§āϰāĻŋāĻā§āĻā§āϰ P, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§Â āĻāĻŦāĻ X, AD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´Â PX =ÂŊ BD
āĻŦāĻž, BD = 2PX = 2 à 5 āϏā§āĻŽāĻŋ.
â´ BD = 10 āϏā§āĻŽāĻŋ.
BCD āϤā§āϰāĻŋāĻā§āĻā§āϰ Q, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Y, CD āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ QY =ÂŊ BD = ÂŊ à 10 āϏā§āĻŽāĻŋ. = 5 āϏā§āĻŽāĻŋ
āĻāϤā§āϤāϰāĻ QY -āĻāϰ āĻĻā§āϰā§āĻā§āϝ 5 āϏā§āĻŽāĻŋ
Q16. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻĒā§āϰāĻļā§āύāĻ
(iv) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BE āĻ CF āĻŽāϧā§āϝāĻŽāĻž G āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ P āĻāĻŦāĻ Q āϝāĻĨāĻžāĻā§āϰāĻŽā§ BG āĻāĻŦāĻ CG -āĻāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ā§ˇ PQ = 3 āϏā§āĻŽāĻŋ. āĻšāϞā§, BC āĻāϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

BGC āϤā§āϰāĻŋāĻā§āĻā§āϰ P, BG āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ Q, CG āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ PQ = ÂŊ BC
āĻŦāĻž, BC = 2PQ
āĻŦāĻž, BC = 2 à 3 āϏā§āĻŽāĻŋ
â´ BC = 6 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ BC āĻāϰ āĻĻā§āϰā§āĻā§āϝ 6 āϏā§āĻŽāĻŋ.
Q16. āϏāĻāĻā§āώāĻŋāĻĒā§āϤ āĻĒā§āϰāĻļā§āύāĻ
(v) ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ BC, CA āĻ AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ D, E āĻ F; FE, AD -āĻā§ O āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§ā§ˇ AD = 6 āϏā§āĻŽāĻŋ. āĻšāϞā§, AO āĻāϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ āϤāĻž āϞāĻŋāĻāĻŋ⧎
āϏāĻŽāĻžāϧāĻžāύāĻ

ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ D, BC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ F, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ FD || AC
āϏā§āϤāϰāĻžāĻ, FD || AE
āĻāĻŦāĻžāϰ, ABC āϤā§āϰāĻŋāĻā§āĻā§āϰ E, AC āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ F, AB āĻŦāĻžāĻšā§āϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§
â´ ED || AB
āϏā§āϤāϰāĻžāĻ, ED || AF
AEDF āĻāϤā§āϰā§āĻā§āĻā§āϰ FD || AE āĻāĻŦāĻ ED || AF
â´ AEDF āĻāĻāĻāĻŋ āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻ
āϝā§āĻšā§āϤ⧠āϏāĻžāĻŽāĻžāύā§āϤāϰāĻŋāĻā§āϰ āĻāϰā§āĻŖāĻĻā§āĻŦāϝāĻŧ āĻĒāϰāϏā§āĻĒāϰāĻā§ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāύā§āĻĄāĻŋāϤ āĻāϰā§
â´ AO = ÂŊ AD = ÂŊ à 6 āϏā§āĻŽāĻŋ.
= 3 āϏā§āĻŽāĻŋ.
āĻāϤā§āϤāϰāĻ AO āĻāϰ āĻĻā§āϰā§āĻā§āϝ āĻ āϏā§āĻŽāĻŋ.
Koshe Dekhi 9 Class 9
Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,
Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9,Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9
Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9, Koshe Dekhi 9 Class 9
āĻāϰāĻ āĻĻā§āĻā§ :
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻžāĻļ āύāĻŦāĻŽ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύ
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻžāĻļ āĻĻāĻļāĻŽ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύÂ
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻž āϏāĻĒā§āϤāĻŽ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύÂ
āĻāĻŖāĻŋāϤ āĻĒā§āϰāĻāĻž āώāώā§āĻ āĻļā§āϰā§āĻŖāĻŋ āϏāĻŽāĻžāϧāĻžāύÂ