IGNOU BCA (1)  BCS – 012 Solved Assignment 2019 – 2020

Course Code : BCS-012

Course Title : Basic Mathematics

Assignment Number : BCA(1)012/Assignment/2019-20

Maximum Marks : 100

Weightage : 25%

Last Date of Submission :

15th October, 2019 (For July, 2019 Session

15th April, 2020 (For January,2020 Session)

Notes: Answer all the questions in the assignment which carry 80 marks in total. All the questions are of equal marks. Rest 20 marks are for viva voce. You may use illustrations and diagrams to enhance the explanations. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation. Make suitable assumption if necessary.

To get the fully solved assignment, click on the button below.

Purchase Previous 10 years BCS-012 Solved Papers for only Rs.100 and get the updated BCS – 012 Solved Assignment (2019-2020) without any extra charges. Click Here

The solution includes the following questions….

Q.1. Show that :

$\begin{vmatrix}&space;1&space;&\omega&space;&\omega^{2}&space;\\&space;\omega&space;&\omega^{2}&space;&1&space;\\&space;\omega^{2}&space;&1&space;&0&space;\end{vmatrix}=0$

where  $\omega$  is a complex root of  unity.

Q.2. If  $A=\begin{pmatrix}&space;3&space;&-1&space;\\&space;2&space;&\,&space;\,&space;\:&space;\:&space;1&space;\end{pmatrix},$ show that  $A^{2}-4A+5I_{2}=0.$ Also, find  $\small&space;A^{4}.$

Q.3. Show that 133 divides  $\small&space;11^{n+2}+12^{2n+1}$ for every natural number  $\small&space;n$.

Q.4. If $\small&space;p^{th}$ term of an A.P. is  $\small&space;q$ and $\small&space;q^{th}$ term of the A.P. is  $\small&space;p,$ find its $\small&space;r^{th}$ term.

Q.5. If  $\small&space;1,\omega&space;,\omega&space;^{2}$ are cube roots of unity, show that

$\small&space;\left&space;(&space;2-\omega&space;\right&space;)\left&space;(&space;2-\omega&space;^{2}&space;\right&space;)\left&space;(&space;2-\omega&space;^{19}&space;\right&space;)\left&space;(&space;2-\omega&space;^{23}&space;\right&space;)=49$.

Q.6. If $\small&space;\alpha&space;,\beta$ are roots of $\small&space;x^{2}-3ax+a^{2}=0,$ find the value(s) of  $\small&space;a$ if $\small&space;\alpha&space;^{2}+\beta&space;^{2}=\frac{7}{4}.$ .

Q.7. If  $\dpi{100}&space;\small&space;y=ln\left&space;(&space;\frac{\sqrt{1+X}-\sqrt{1-X}}{\sqrt{1+X}+\sqrt{1-X}}&space;\right&space;),$ find $\dpi{100}&space;\small&space;\frac{dy}{dX}$.

Q.8. If  $\dpi{100}&space;\small&space;A=\begin{pmatrix}&space;2&space;&-1&space;&\:&space;\:&space;\:&space;0&space;\\&space;1&space;&\:&space;\:&space;0&space;&\:&space;\:&space;\:&space;3&space;\\&space;3&space;&\:&space;\:&space;0&space;&-1&space;\end{pmatrix},$ show that  $\dpi{100}&space;\small&space;A\left&space;(&space;adj.A&space;\right&space;)=\begin{vmatrix}&space;A&space;\end{vmatrix}I_{3}$.

Q.9. Find the sum of all the integers between 100 and 1000 that are divisible by 9.

Q.10. Write De Moivre’s theorem and use it to find $\dpi{100}&space;\small&space;\left&space;(&space;\sqrt{3}+i&space;\right&space;)^{3}$.

Q.11. Solve the equation $\dpi{100}&space;\small&space;x^{3}-13x^{2}+15x+189=0,$ Given that one of the roots exceeds the other by 2.

Q.12. Solve the inequality  $\dpi{100}&space;\small&space;\begin{vmatrix}&space;\frac{2}{x-1}&space;\end{vmatrix}>&space;5$ and graph its solution.

Q.13. Determine the values of  $\dpi{100}&space;\small&space;x$  for which $\dpi{100}&space;\small&space;f\left&space;(&space;x&space;\right&space;)=x^{4}-8x^{3}+22x^{2}-24x+21$ is increasing and for which it is decreasing.

Q.14. Find the points of local maxima and local minima of  $\dpi{100}&space;\small&space;f\left&space;(&space;x&space;\right&space;)=x^{3}-6x^{2}+9x+2014,\:&space;\:&space;x\epsilon&space;\mathbb{R}.$

Q.15. Evaluate : $\dpi{100}&space;\small&space;\int&space;\frac{dx}{\left&space;(&space;e^{x}-1&space;\right&space;)^{2}}$

Q.16. Using integration, find length of the curve  $\dpi{100}&space;\small&space;y=3-x$ from $\dpi{100}&space;\small&space;\left&space;(&space;-1,4&space;\right&space;)$ to $\dpi{100}&space;\small&space;\left&space;(&space;3,0&space;\right&space;)$.

Q.17. Find the sum upto  $\dpi{100}&space;\small&space;n$  terms of the series  $\dpi{100}&space;\small&space;0.4+0.44+0.444+...$

Q.18. Show that the lins  $\dpi{100}&space;\small&space;\frac{x-5}{4}=\frac{y-7}{-4}=\frac{z-3}{-5}$  and  $\dpi{100}&space;\small&space;\frac{x-8}{4}=\frac{y-4}{-4}=\frac{z-5}{4}$  intersect.

Q.19. A tailor needs at least 40 large buttons and 60 small buttons. In the market, buttions are available in two boxes or cards. A box contains 6 large and 2 small buttons and a card contains 2 large and 4 small buttons. If the cost of a box is $\dpi{100}&space;\small&space;\&space;\:&space;3$ and cost of a card is $\dpi{100}&space;\small&space;\&space;\:&space;2$, find how many boxes and cards should be purchased so as to minimize the expenditure.

Q.20. A manufacturer makes two types of furniture, chairs and tables. Both the products are processed on three machines $\dpi{100}&space;\small&space;A_{1},A_{2}$ and $\dpi{100}&space;\small&space;A_{3}$. Machine $\dpi{100}&space;\small&space;A_{1}$ requires 3 hours for a chair and 3 hours for a table, machine $\dpi{100}&space;\small&space;A_{2}$ requires 5 hours for a chair and 2 hours for a table and machine $\dpi{100}&space;\small&space;A_{3}$ requires 2 hours for a chair and 6 hours for a table. The maximum time available on machines $\dpi{100}&space;\small&space;A_{1},A_{2}$ and $\dpi{100}&space;\small&space;A_{3}$ is 36 hours, 50 hours and 60 hours respectively. Profits are $\dpi{100}&space;\small&space;\&space;\:&space;20$ per chair and \$ 30 per table. Formulate the above as a linear programming problem to maximize the profit and solve it.

error: Content is protected !!